Proof 01. 1 ⊢ x ∈ dom (restr f A), hypo. 02. 1 ⊢ ∃y. (x, y) ∈ restr f A, dom_elim 1. 03. 3 ⊢ (x, y) ∈ restr f A, hypo. 04. 3 ⊢ (x, y) ∈ f ∩ (A × UnivCl), eq_subst restr_eq 3, P u ↔ (x, y) ∈ u. 05. 3 ⊢ (x, y) ∈ f, intersection_eliml 4. 06. 3 ⊢ (x, y) ∈ A × UnivCl, intersection_elimr 4. 07. 3 ⊢ x ∈ A ∧ y ∈ UnivCl, prod_elim_pair 6. 08. 3 ⊢ x ∈ A, conj_eliml 7. 09. 3 ⊢ x ∈ dom f, dom_intro 5. 10. 3 ⊢ x ∈ dom f ∩ A, intersection_intro 9 8. 11. 1 ⊢ x ∈ dom f ∩ A, ex_elim 2 10. 12. ⊢ x ∈ dom (restr f A) → x ∈ dom f ∩ A, subj_intro 11. 13. 13 ⊢ x ∈ dom f ∩ A, hypo. 14. 13 ⊢ x ∈ dom f, intersection_eliml 13. 15. 13 ⊢ x ∈ A, intersection_elimr 13. 16. 13 ⊢ ∃y. (x, y) ∈ f, dom_elim 14. 17. 17 ⊢ (x, y) ∈ f, hypo. 18. 17 ⊢ set (x, y), set_intro 17. 19. 17 ⊢ set y, setr_from_pair 18. 20. 17 ⊢ y ∈ UnivCl, UnivCl_intro 19. 21. 13, 17 ⊢ (x, y) ∈ A × UnivCl, prod_intro 15 20. 22. 13, 17 ⊢ (x, y) ∈ f ∩ (A × UnivCl), intersection_intro 17 21. 23. 13, 17 ⊢ (x, y) ∈ restr f A, eq_subst_rev restr_eq 22, P u ↔ (x, y) ∈ u. 24. 13, 17 ⊢ x ∈ dom (restr f A), dom_intro 23. 25. 13 ⊢ x ∈ dom (restr f A), ex_elim 16 24. 26. ⊢ x ∈ dom f ∩ A → x ∈ dom (restr f A), subj_intro 25. 27. ⊢ x ∈ dom (restr f A) ↔ x ∈ dom f ∩ A, bij_intro 12 26. 28. ⊢ ∀x. x ∈ dom (restr f A) ↔ x ∈ dom f ∩ A, uq_intro 27. dom_restr. ⊢ dom (restr f A) = dom f ∩ A, ext 28.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.