Theorem diff_dist_inter

Theorem. diff_dist_inter
(A ∩ B) \ C = (A \ C) ∩ (B \ C)
Proof
01. ⊢ (A ∩ B) \ C = (A ∩ B) ∩ compl C, diff_as_inter.
02. ⊢ compl C ∩ compl C = compl C, intersection_idem.
03. ⊢ compl C = compl C ∩ compl C, eq_symm 2.
04. ⊢ (A ∩ B) ∩ compl C = (A ∩ B) ∩ (compl C ∩ compl C),
  f_equal 3, f x = (A ∩ B) ∩ x.
05. ⊢ (A ∩ B) ∩ (compl C ∩ compl C) =
  ((A ∩ B) ∩ compl C) ∩ compl C, intersection_assocr.
06. ⊢ (A ∩ B) ∩ compl C = compl C ∩ (A ∩ B), intersection_comm.
07. ⊢ compl C ∩ (A ∩ B) = (compl C ∩ A) ∩ B, intersection_assocr.
08. ⊢ (A ∩ B) ∩ compl C = (compl C ∩ A) ∩ B, eq_trans 6 7.
09. ⊢ compl C ∩ A = A ∩ compl C, intersection_comm.
10. ⊢ A \ C = A ∩ compl C, diff_as_inter.
11. ⊢ A ∩ compl C = A \ C, eq_symm 10.
12. ⊢ compl C ∩ A = A \ C, eq_trans 9 11.
13. ⊢ (A ∩ B) ∩ compl C = (A \ C) ∩ B, eq_subst 12 8,
  P x ↔ (A ∩ B) ∩ compl C = x ∩ B.
14. ⊢ (A ∩ B) ∩ compl C = ((A ∩ B) ∩ compl C) ∩ compl C, eq_trans 4 5.
15. ⊢ (A ∩ B) ∩ compl C = (A \ C) ∩ B ∩ compl C, eq_subst 13 14,
  P x ↔ (A ∩ B) ∩ compl C = x ∩ compl C.
16. ⊢ (A \ C) ∩ B ∩ compl C = (A \ C) ∩ (B ∩ compl C), intersection_assocl.
17. ⊢ (A ∩ B) ∩ compl C = (A \ C) ∩ (B ∩ compl C), eq_trans 15 16.
18. ⊢ B \ C = B ∩ compl C, diff_as_inter.
19. ⊢ (A ∩ B) ∩ compl C = (A \ C) ∩ (B \ C), eq_subst_rev 18 17,
  P x ↔ (A ∩ B) ∩ compl C = (A \ C) ∩ x.
diff_dist_inter. ⊢ (A ∩ B) \ C = (A \ C) ∩ (B \ C), eq_trans 1 19.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.