Theorem intersection_assocl

Theorem. intersection_assocl
(A ∩ B) ∩ C = A ∩ (B ∩ C)
Proof
01. 1 ⊢ x ∈ (A ∩ B) ∩ C, hypo.
02. 1 ⊢ x ∈ A ∩ B, intersection_eliml 1.
03. 1 ⊢ x ∈ A, intersection_eliml 2.
04. 1 ⊢ x ∈ B, intersection_elimr 2.
05. 1 ⊢ x ∈ C, intersection_elimr 1.
06. 1 ⊢ x ∈ B ∩ C, intersection_intro 4 5.
07. 1 ⊢ x ∈ A ∩ (B ∩ C), intersection_intro 3 6.
08. ⊢ x ∈ (A ∩ B) ∩ C → x ∈ A ∩ (B ∩ C), subj_intro 7.
09. 9 ⊢ x ∈ A ∩ (B ∩ C), hypo.
10. 9 ⊢ x ∈ A, intersection_eliml 9.
11. 9 ⊢ x ∈ B ∩ C, intersection_elimr 9.
12. 9 ⊢ x ∈ B, intersection_eliml 11.
13. 9 ⊢ x ∈ C, intersection_elimr 11.
14. 9 ⊢ x ∈ A ∩ B, intersection_intro 10 12.
15. 9 ⊢ x ∈ (A ∩ B) ∩ C, intersection_intro 14 13.
16. ⊢ x ∈ A ∩ (B ∩ C) → x ∈ (A ∩ B) ∩ C, subj_intro 15.
17. ⊢ x ∈ (A ∩ B) ∩ C ↔ x ∈ A ∩ (B ∩ C), bij_intro 8 16.
18. ⊢ ∀x. x ∈ (A ∩ B) ∩ C ↔ x ∈ A ∩ (B ∩ C), uq_intro 17.
intersection_assocl. ⊢ (A ∩ B) ∩ C = A ∩ (B ∩ C), ext 18.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.