This theorem states that any set is
strictly less numerous than its power set.
Proof sketch
First, it must be shown that an injection i: X →
power X exists. This is easily witnessed by i x := {x}, since we have
sg_is_inj. Now it must be shown that no surjection
f: X → power X exists. So let f be such a surjection; we need to find
a contradiction. Consider the "diagonal" set
D = {x ∈ X | x ∉ f x}.
Because D ⊆ X, we have D ∈ power X. Furthermore, because f is
surjective, we have D ∈ rng f. So there is an x ∈ X with
D = f x. Since x ∈ X, we obtain the equivalence
x ∈ D ↔ x ∉ f x
directly from the Definition of D. Thus
x ∈ f x ↔ x ∉ f x,
but this is a contradiction, as shown in diag_contra. q.e.d.
Proof let i = {t | ∃x. x ∈ X ∧ t = (x, {x})}. 01. ⊢ i = i, eq_refl. 02. 2 ⊢ x ∈ X, hypo. 03. 2 ⊢ {x} ⊆ X, sg_incl_in 2. 04. 2 ⊢ set x, set_intro 2. 05. 2 ⊢ set {x}, set_sg 4. 06. 2 ⊢ {x} ∈ power X, power_intro 5 3. 07. ⊢ x ∈ X → {x} ∈ power X, subj_intro 6. 08. ⊢ ∀x. x ∈ X → {x} ∈ power X, uq_intro 7. 09. ⊢ map i X (power X), map_from_term 1 8. 10. 10 ⊢ a ∈ X, hypo. 11. 11 ⊢ b ∈ X, hypo. 12. 12 ⊢ app i a = app i b, hypo. 13. 10 ⊢ app i a = {a}, map_from_term_app 1 8 10. 14. 11 ⊢ app i b = {b}, map_from_term_app 1 8 11. 15. 11, 12 ⊢ app i a = {b}, eq_trans 12 14. 16. 10, 11, 12 ⊢ {a} = {b}, eq_trans_ll 13 15. 17. 10 ⊢ set a, set_intro 10. 18. 11 ⊢ set b, set_intro 11. 19. 10, 11, 12 ⊢ a = b, sg_is_inj 17 18 16. 20. ⊢ a ∈ X → b ∈ X → app i a = app i b → a = b, subj_intro_iii 19. 21. ⊢ ∀b. a ∈ X → b ∈ X → app i a = app i b → a = b, uq_intro 20. 22. ⊢ ∀a. ∀b. a ∈ X → b ∈ X → app i a = app i b → a = b, uq_intro 21. 23. ⊢ inj i X (power X), inj_intro 9 22. 24. ⊢ ∃g. inj g X (power X), ex_intro 23. let D = {x | x ∈ X ∧ ¬x ∈ app f x}. 25. 25 ⊢ set X, hypo. 26. 26 ⊢ ∃f. sur f X (power X), hypo. 27. 27 ⊢ sur f X (power X), hypo. 28. ⊢ D ⊆ X, sep_is_subclass. 29. 25 ⊢ set D, subset 28 25. 30. 25 ⊢ D ∈ power X, power_intro 29 28. 31. 27 ⊢ rng f = power X, sur_elim 27. 32. 25, 27 ⊢ D ∈ rng f, eq_subst_rev 31 30, P t ↔ D ∈ t. 33. 27 ⊢ map f X (power X), sur_is_map 27. 34. 25, 27 ⊢ ∃x. x ∈ X ∧ D = app f x, map_rng_elim 33 32. 35. 35 ⊢ x ∈ X ∧ D = app f x, hypo. 36. 35 ⊢ x ∈ X, conj_eliml 35. 37. 35 ⊢ D = app f x, conj_elimr 35. 38. ⊢ x ∈ D ↔ x ∈ D, equi_refl. 39. 35 ⊢ x ∈ app f x ↔ x ∈ D, eq_subst 37 38, P t ↔ (x ∈ t ↔ x ∈ D). 40. 40 ⊢ x ∈ D, hypo. 41. 40 ⊢ x ∈ X ∧ ¬x ∈ app f x, comp_elim 40. 42. 40 ⊢ ¬x ∈ app f x, conj_elimr 41. 43. ⊢ x ∈ D → ¬x ∈ app f x, subj_intro 42. 44. 44 ⊢ ¬x ∈ app f x, hypo. 45. 35, 44 ⊢ x ∈ X ∧ ¬x ∈ app f x, conj_intro 36 44. 46. 35 ⊢ set x, set_intro 36. 47. 35, 44 ⊢ x ∈ D, comp_intro 46 45. 48. 35 ⊢ ¬x ∈ app f x → x ∈ D, subj_intro 47. 49. 35 ⊢ x ∈ D ↔ ¬x ∈ app f x, bij_intro 43 48. 50. 35 ⊢ x ∈ app f x ↔ ¬x ∈ app f x, equi_trans 39 49. 51. 35 ⊢ ⊥, diag_contra 50. 52. 25, 27 ⊢ ⊥, ex_elim 34 51. 53. 25, 26 ⊢ ⊥, ex_elim 26 52. 54. 25 ⊢ ¬∃f. sur f X (power X), neg_intro 53. 55. ⊢ num_le X (power X), num_le_intro 24. 56. 25 ⊢ num_lt X (power X), num_lt_intro 55 54. Cantor's_theorem. ⊢ set X → num_lt X (power X), subj_intro 56.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.