Proof 01. 1 ⊢ i = {t | ∃x. x ∈ X ∧ t = (x, {x})}, hypo. 02. 2 ⊢ x ∈ X, hypo. 03. 2 ⊢ {x} ⊆ X, sg_incl_in 2. 04. 2 ⊢ set x, set_intro 2. 05. 2 ⊢ set {x}, set_sg 4. 06. 2 ⊢ {x} ∈ power X, power_intro 5 3. 07. ⊢ x ∈ X → {x} ∈ power X, subj_intro 6. 08. ⊢ ∀x. x ∈ X → {x} ∈ power X, uq_intro 7. 09. 1 ⊢ map i X (power X), map_from_term 1 8. 10. 10 ⊢ a ∈ X, hypo. 11. 11 ⊢ b ∈ X, hypo. 12. 12 ⊢ app i a = app i b, hypo. 13. 1, 10 ⊢ app i a = {a}, map_from_term_app 1 8 10. 14. 1, 11 ⊢ app i b = {b}, map_from_term_app 1 8 11. 15. 1, 11, 12 ⊢ app i a = {b}, eq_trans 12 14. 16. 1, 10, 11, 12 ⊢ {a} = {b}, eq_symm_trans 13 15. 17. 10 ⊢ set a, set_intro 10. 18. 11 ⊢ set b, set_intro 11. 19. 1, 10, 11, 12 ⊢ a = b, sg_is_inj 17 18 16. 20. 1 ⊢ a ∈ X → b ∈ X → app i a = app i b → a = b, subj_intro_iii 19. 21. 1 ⊢ ∀b. a ∈ X → b ∈ X → app i a = app i b → a = b, uq_intro 20. 22. 1 ⊢ ∀a. ∀b. a ∈ X → b ∈ X → app i a = app i b → a = b, uq_intro 21. 23. 1 ⊢ inj i X (power X), inj_intro 9 22. 24. 1 ⊢ ∃i. inj i X (power X), ex_intro 23. 25. ⊢ i = {t | ∃x. x ∈ X ∧ t = (x, {x})} → ∃i. inj i X (power X), subj_intro 24. 26. ⊢ ∀i. i = {t | ∃x. x ∈ X ∧ t = (x, {x})} → ∃i. inj i X (power X), uq_intro 25. 27. ⊢ ∃i. inj i X (power X), disused_eq 26. 28. 28 ⊢ set X, hypo. 29. 29 ⊢ ∃f. sur f X (power X), hypo. 30. 30 ⊢ sur f X (power X), hypo. 31. 31 ⊢ D = {x | x ∈ X ∧ ¬x ∈ app f x}, hypo. 32. ⊢ {x | x ∈ X ∧ ¬x ∈ app f x} ⊆ X, sep_is_subclass. 33. 31 ⊢ D ⊆ X, eq_subst_rev 31 32, P t ↔ t ⊆ X. 34. 28, 31 ⊢ set D, subset 33 28. 35. 28, 31 ⊢ D ∈ power X, power_intro 34 33. 36. 30 ⊢ rng f = power X, sur_elim 30. 37. 28, 30, 31 ⊢ D ∈ rng f, eq_subst_rev 36 35, P t ↔ D ∈ t. 38. 30 ⊢ map f X (power X), sur_is_map 30. 39. 28, 30, 31 ⊢ ∃x. x ∈ X ∧ D = app f x, map_rng_elim 38 37. 40. 40 ⊢ x ∈ X ∧ D = app f x, hypo. 41. 40 ⊢ x ∈ X, conj_eliml 40. 42. 40 ⊢ D = app f x, conj_elimr 40. 43. ⊢ x ∈ D ↔ x ∈ D, equi_refl. 44. 40 ⊢ x ∈ app f x ↔ x ∈ D, eq_subst 42 43, P t ↔ (x ∈ t ↔ x ∈ D). 45. 45 ⊢ x ∈ D, hypo. 46. 31, 45 ⊢ x ∈ {x | x ∈ X ∧ ¬x ∈ app f x}, eq_subst 31 45. 47. 31, 45 ⊢ x ∈ X ∧ ¬x ∈ app f x, comp_elim 46. 48. 31, 45 ⊢ ¬x ∈ app f x, conj_elimr 47. 49. 31 ⊢ x ∈ D → ¬x ∈ app f x, subj_intro 48. 50. 50 ⊢ ¬x ∈ app f x, hypo. 51. 40, 50 ⊢ x ∈ X ∧ ¬x ∈ app f x, conj_intro 41 50. 52. 40 ⊢ set x, set_intro 41. 53. 40, 50 ⊢ x ∈ {x | x ∈ X ∧ ¬x ∈ app f x}, comp_intro 52 51. 54. 31, 40, 50 ⊢ x ∈ D, eq_subst_rev 31 53, P t ↔ x ∈ t. 55. 31, 40 ⊢ ¬x ∈ app f x → x ∈ D, subj_intro 54. 56. 31, 40 ⊢ x ∈ D ↔ ¬x ∈ app f x, bij_intro 49 55. 57. 31, 40 ⊢ x ∈ app f x ↔ ¬x ∈ app f x, equi_trans 44 56. 58. 31, 40 ⊢ ⊥, diag_contra 57. 59. 28, 30, 31 ⊢ ⊥, ex_elim 39 58. 60. 28, 30 ⊢ D = {x | x ∈ X ∧ ¬x ∈ app f x} → ⊥, subj_intro 59. 61. 28, 30 ⊢ ∀D. D = {x | x ∈ X ∧ ¬x ∈ app f x} → ⊥, uq_intro 60. 62. 28, 30 ⊢ ⊥, disused_eq 61. 63. 28, 29 ⊢ ⊥, ex_elim 29 62. 64. 28 ⊢ ¬∃f. sur f X (power X), neg_intro 63. 65. ⊢ num_le X (power X), num_le_intro 27. 66. 28 ⊢ num_lt X (power X), num_lt_intro 65 64. Cantor's_theorem. ⊢ set X → num_lt X (power X), subj_intro 66.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.