Theorem Cantor's_theorem

Theorem. Cantor's_theorem
set X → num_lt X (power X)
Proof
01. 1 ⊢ i = {t | ∃x. x ∈ X ∧ t = (x, {x})}, hypo.
02. 2 ⊢ x ∈ X, hypo.
03. 2 ⊢ {x} ⊆ X, sg_incl_in 2.
04. 2 ⊢ set x, set_intro 2.
05. 2 ⊢ set {x}, set_sg 4.
06. 2 ⊢ {x} ∈ power X, power_intro 5 3.
07. ⊢ x ∈ X → {x} ∈ power X, subj_intro 6.
08. ⊢ ∀x. x ∈ X → {x} ∈ power X, uq_intro 7.
09. 1 ⊢ map i X (power X), map_from_term 1 8.
10. 10 ⊢ a ∈ X, hypo.
11. 11 ⊢ b ∈ X, hypo.
12. 12 ⊢ app i a = app i b, hypo.
13. 1, 10 ⊢ app i a = {a}, map_from_term_app 1 8 10.
14. 1, 11 ⊢ app i b = {b}, map_from_term_app 1 8 11.
15. 1, 11, 12 ⊢ app i a = {b}, eq_trans 12 14.
16. 1, 10, 11, 12 ⊢ {a} = {b}, eq_symm_trans 13 15.
17. 10 ⊢ set a, set_intro 10.
18. 11 ⊢ set b, set_intro 11.
19. 1, 10, 11, 12 ⊢ a = b, sg_is_inj 17 18 16.
20. 1 ⊢ a ∈ X → b ∈ X → app i a = app i b → a = b, subj_intro_iii 19.
21. 1 ⊢ ∀b. a ∈ X → b ∈ X → app i a = app i b → a = b, uq_intro 20.
22. 1 ⊢ ∀a. ∀b. a ∈ X → b ∈ X → app i a = app i b → a = b, uq_intro 21.
23. 1 ⊢ inj i X (power X), inj_intro 9 22.
24. 1 ⊢ ∃i. inj i X (power X), ex_intro 23.
25. ⊢ i = {t | ∃x. x ∈ X ∧ t = (x, {x})} →
  ∃i. inj i X (power X), subj_intro 24.
26. ⊢ ∀i. i = {t | ∃x. x ∈ X ∧ t = (x, {x})} →
  ∃i. inj i X (power X), uq_intro 25.
27. ⊢ ∃i. inj i X (power X), disused_eq 26.
28. 28 ⊢ set X, hypo.
29. 29 ⊢ ∃f. sur f X (power X), hypo.
30. 30 ⊢ sur f X (power X), hypo.
31. 31 ⊢ D = {x | x ∈ X ∧ ¬x ∈ app f x}, hypo.
32. ⊢ {x | x ∈ X ∧ ¬x ∈ app f x} ⊆ X, sep_is_subclass.
33. 31 ⊢ D ⊆ X, eq_subst_rev 31 32, P t ↔ t ⊆ X.
34. 28, 31 ⊢ set D, subset 33 28.
35. 28, 31 ⊢ D ∈ power X, power_intro 34 33.
36. 30 ⊢ rng f = power X, sur_elim 30.
37. 28, 30, 31 ⊢ D ∈ rng f, eq_subst_rev 36 35, P t ↔ D ∈ t.
38. 30 ⊢ map f X (power X), sur_is_map 30.
39. 28, 30, 31 ⊢ ∃x. x ∈ X ∧ D = app f x, map_rng_elim 38 37.
40. 40 ⊢ x ∈ X ∧ D = app f x, hypo.
41. 40 ⊢ x ∈ X, conj_eliml 40.
42. 40 ⊢ D = app f x, conj_elimr 40.
43. ⊢ x ∈ D ↔ x ∈ D, equi_refl.
44. 40 ⊢ x ∈ app f x ↔ x ∈ D, eq_subst 42 43, P t ↔ (x ∈ t ↔ x ∈ D).
45. 45 ⊢ x ∈ D, hypo.
46. 31, 45 ⊢ x ∈ {x | x ∈ X ∧ ¬x ∈ app f x}, eq_subst 31 45.
47. 31, 45 ⊢ x ∈ X ∧ ¬x ∈ app f x, comp_elim 46.
48. 31, 45 ⊢ ¬x ∈ app f x, conj_elimr 47.
49. 31 ⊢ x ∈ D → ¬x ∈ app f x, subj_intro 48.
50. 50 ⊢ ¬x ∈ app f x, hypo.
51. 40, 50  ⊢ x ∈ X ∧ ¬x ∈ app f x, conj_intro 41 50.
52. 40 ⊢ set x, set_intro 41.
53. 40, 50 ⊢ x ∈ {x | x ∈ X ∧ ¬x ∈ app f x}, comp_intro 52 51.
54. 31, 40, 50 ⊢ x ∈ D, eq_subst_rev 31 53, P t ↔ x ∈ t.
55. 31, 40 ⊢ ¬x ∈ app f x → x ∈ D, subj_intro 54.
56. 31, 40 ⊢ x ∈ D ↔ ¬x ∈ app f x, bij_intro 49 55.
57. 31, 40 ⊢ x ∈ app f x ↔ ¬x ∈ app f x, equi_trans 44 56.
58. 31, 40 ⊢ ⊥, diag_contra 57.
59. 28, 30, 31 ⊢ ⊥, ex_elim 39 58.
60. 28, 30 ⊢ D = {x | x ∈ X ∧ ¬x ∈ app f x} → ⊥, subj_intro 59.
61. 28, 30 ⊢ ∀D. D = {x | x ∈ X ∧ ¬x ∈ app f x} → ⊥, uq_intro 60.
62. 28, 30 ⊢ ⊥, disused_eq 61.
63. 28, 29 ⊢ ⊥, ex_elim 29 62.
64. 28 ⊢ ¬∃f. sur f X (power X), neg_intro 63.
65. ⊢ num_le X (power X), num_le_intro 27.
66. 28 ⊢ num_lt X (power X), num_lt_intro 65 64.
Cantor's_theorem. ⊢ set X → num_lt X (power X), subj_intro 66.

Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.