Proof 01. 1 ⊢ set x, hypo. 02. 2 ⊢ set y, hypo. 03. 3 ⊢ {x} = {y}, hypo. 04. ⊢ x = x, eq_refl. 05. 1 ⊢ x ∈ {x}, sg_intro 1 4. 06. 1, 3 ⊢ x ∈ {y}, eq_subst 3 5, P t ↔ x ∈ t. 07. 1, 2, 3 ⊢ x = y, sg_elim 2 6. sg_is_inj. ⊢ set x → set y → {x} = {y} → x = y, subj_intro_iii 7.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.