Proof 01. 1 ⊢ f = {t | ∃x. x ∈ X ∧ t = (x, y x)}, hypo. 02. 2 ⊢ ∀x. x ∈ X → y x ∈ Y, hypo. 03. 3 ⊢ x ∈ X, hypo. 04. 1, 2 ⊢ map f X Y, map_from_term 1 2. 05. 2, 3 ⊢ y x ∈ Y, uq_bounded_elim 2 3. 06. 2, 3 ⊢ set (y x), set_intro 5. 07. 3 ⊢ set x, set_intro 3. 08. 2, 3 ⊢ set (x, y x), set_pair 7 6. 09. ⊢ (x, y x) = (x, y x), eq_refl. 10. 3 ⊢ x ∈ X ∧ (x, y x) = (x, y x), conj_intro 3 9. 12. 3 ⊢ ∃a. a ∈ X ∧ (x, y x) = (a, y a), ex_intro 10. 13. 2, 3 ⊢ (x, y x) ∈ {t | ∃a. a ∈ X ∧ t = (a, y a)}, comp_intro 8 12, P t ↔ (∃a. a ∈ X ∧ t = (a, y a)). 14. 1, 2, 3 ⊢ (x, y x) ∈ f, eq_subst_rev 1 13, P u ↔ (x, y x) ∈ u. 15. 1, 2, 3 ⊢ y x = app f x, map_app_intro 4 14. 16. 1, 2, 3 ⊢ app f x = y x, eq_symm 15. map_from_term_app. ⊢ f = {t | ∃x. x ∈ X ∧ t = (x, y x)} → (∀x. x ∈ X → y x ∈ Y) → x ∈ X → app f x = y x, subj_intro_iii 16.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.