Proof 01. 1 ⊢ x ∈ A, hypo. 02. 1 ⊢ set x, set_intro 1. 03. 3 ⊢ u ∈ {x}, hypo. 04. 1, 3 ⊢ u = x, sg_elim 2 3. 05. 1, 3 ⊢ u ∈ A, eq_subst_rev 4 1, P u ↔ u ∈ A. 06. 1 ⊢ u ∈ {x} → u ∈ A, subj_intro 5. 08. 1 ⊢ ∀u. u ∈ {x} → u ∈ A, uq_intro 6. 09. 1 ⊢ {x} ⊆ A, incl_intro 8. sg_incl_in. ⊢ x ∈ A → {x} ⊆ A, subj_intro 9.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.