Proof 01. 1 ⊢ ∃x. S x ∧ P x, hypo. 02. 2 ⊢ ∀x. ∀y. P x → P y → x = y, hypo. 03. 3 ⊢ S x ∧ P x, hypo. 04. 3 ⊢ S x, conj_eliml 3. 05. 3 ⊢ P x, conj_elimr 3. 06. 6 ⊢ x = y, hypo. 07. 3, 6 ⊢ P y, eq_subst 6 5. 08. 3 ⊢ x = y → P y, subj_intro 7. 09. 2 ⊢ ∀y. P x → P y → x = y, uq_elim 2. 10. 2 ⊢ P x → P y → x = y, uq_elim 9. 11. 2, 3 ⊢ P y → x = y, subj_elim 10 5. 12. 2, 3 ⊢ x = y ↔ P y, bij_intro 8 11. 13. 2, 3 ⊢ ∀y. x = y ↔ P y, uq_intro 12. 14. 2, 3 ⊢ S x ∧ ∀y. x = y ↔ P y, conj_intro 4 13. 15. 2, 3 ⊢ ∃x. S x ∧ ∀y. x = y ↔ P y, ex_intro 14. 16. 1, 2 ⊢ ∃x. S x ∧ ∀y. x = y ↔ P y, ex_elim 1 15. ex_uniq_set_intro. ⊢ (∃x. S x ∧ P x) → (∀x. ∀y. P x → P y → x = y) → (∃x. S x ∧ ∀y. x = y ↔ P y), subj_intro_ii 16.
Dependencies
The given proof depends on one axiom:
eq_subst.