Proof nadd_assoc. ⊢ a ∈ ℕ → b ∈ ℕ → c ∈ ℕ → (a + b) + c = a + (b + c), pred_iii_restr nat_incl_in_real radd_assoc.
DependenciesThe given proof depends on five axioms:comp, eq_subst, radd_assoc, radd_closed, real_is_set.