Proof 01. 1 ⊢ ∃b. set b ∧ ∀y. b = y ↔ P y, hypo. 02. 2 ⊢ set b ∧ ∀y. b = y ↔ P y, hypo. 03. 2 ⊢ set b, conj_eliml 2. 04. 2 ⊢ ∀y. b = y ↔ P y, conj_elimr 2. 05. 2 ⊢ {b} = {y | P y}, sg_eq_from_uniq 3 4. 06. 2 ⊢ set b ∧ {b} = {y | P y}, conj_intro 3 5. 07. 2 ⊢ ∃b. set b ∧ {b} = {y | P y}, ex_intro 6. 08. 1 ⊢ ∃b. set b ∧ {b} = {y | P y}, ex_elim 1 7. sg_eq_from_ex_uniq. ⊢ (∃b. set b ∧ ∀y. b = y ↔ P y) → (∃b. set b ∧ {b} = {y | P y}), subj_intro 8.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.