Proof 01. 1 ⊢ set x, hypo. 02. 2 ⊢ ∀y. x = y ↔ P y, hypo. 03. 2 ⊢ x = y ↔ P y, uq_elim 2. 04. 4 ⊢ y ∈ {x}, hypo. 07. 1, 4 ⊢ y = x, sg_elim 1 4. 08. 1, 4 ⊢ x = y, eq_symm 7. 09. 1, 2, 4 ⊢ P y, lsubj_elim 3 8. 10. 1, 2, 4 ⊢ y ∈ {y | P y}, comp_intro_from 4 9. 11. 1, 2 ⊢ y ∈ {x} → y ∈ {y | P y}, subj_intro 10. 12. 12 ⊢ y ∈ {y | P y}, hypo. 13. 12 ⊢ P y, comp_elim 12. 14. 2, 12 ⊢ x = y, rsubj_elim 3 13. 15. 2, 12 ⊢ y = x, eq_symm 14. 16. 1, 2, 12 ⊢ y ∈ {x}, sg_intro 1 15. 17. 1, 2 ⊢ y ∈ {y | P y} → y ∈ {x}, subj_intro 16. 18. 1, 2 ⊢ y ∈ {x} ↔ y ∈ {y | P y}, bij_intro 11 17. 19. 1, 2 ⊢ ∀y. y ∈ {x} ↔ y ∈ {y | P y}, uq_intro 18. 20. 1, 2 ⊢ {x} = {y | P y}, ext 19. sg_eq_from_uniq. ⊢ set x → (∀y. x = y ↔ P y) → {x} = {y | P y}, subj_intro_ii 20.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.