Theorem nadd_neutr

Theorem. nadd_neutr
a ∈ ℕ → a + 0 = a
Proof
nadd_neutr. ⊢ a ∈ ℕ → a + 0 = a,
  pred_restr nat_incl_in_real radd_neutr.

Dependencies
The given proof depends on five axioms:
comp, eq_subst, radd_closed, radd_neutr, real_is_set.