Proof 01. 1 ⊢ A ⊆ B, hypo. 02. 1 ⊢ UnivCl \ B ⊆ UnivCl \ A, incl_contraposition 1. 03. ⊢ compl A = UnivCl \ A, compl_as_diff. 04. ⊢ compl B = UnivCl \ B, compl_as_diff. 05. 1 ⊢ compl B ⊆ UnivCl \ A, eq_subst_rev 4 2, P t ↔ t ⊆ UnivCl \ A. 06. 1 ⊢ compl B ⊆ compl A, eq_subst_rev 3 5, P t ↔ compl B ⊆ t. incl_contraposition_compl. ⊢ A ⊆ B → compl B ⊆ compl A, subj_intro 6.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.