Proof 01. 1 ⊢ x ∈ compl A, hypo. 02. 1 ⊢ set x, set_intro 1. 03. 1 ⊢ x ∈ UnivCl, UnivCl_intro 2. 04. 1 ⊢ ¬x ∈ A, compl_elim 1. 05. 1 ⊢ x ∈ UnivCl \ A, diff_intro 3 4. 06. ⊢ x ∈ compl A → x ∈ UnivCl \ A, subj_intro 5. 07. 7 ⊢ x ∈ UnivCl \ A, hypo. 08. 7 ⊢ set x, set_intro 7. 09. 7 ⊢ ¬x ∈ A, diff_elimr 7. 10. 7 ⊢ x ∈ compl A, compl_intro 8 9. 11. ⊢ x ∈ UnivCl \ A → x ∈ compl A, subj_intro 10. 12. ⊢ x ∈ compl A ↔ x ∈ UnivCl \ A, bij_intro 6 11. 13. ⊢ ∀x. x ∈ compl A ↔ x ∈ UnivCl \ A, uq_intro 12. compl_as_diff. ⊢ compl A = UnivCl \ A, ext 13.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.