Proof 01. 1 ⊢ x ∈ compl A, hypo. 02. 1 ⊢ x ∈ {x | ¬x ∈ A}, eq_subst compl_eq 1, P u ↔ x ∈ u. 03. 1 ⊢ ¬x ∈ A, comp_elim 2. compl_elim. ⊢ x ∈ compl A → ¬x ∈ A, subj_intro 3.
DependenciesThe given proof depends on two axioms:comp, eq_subst.