Proof 01. 1 ⊢ A ⊆ B, hypo. 02. 2 ⊢ x ∈ X \ B, hypo. 03. 2 ⊢ x ∈ X, diff_eliml 2. 04. 2 ⊢ ¬x ∈ B, diff_elimr 2. 05. 1 ⊢ x ∈ A → x ∈ B, incl_elim 1. 06. 1 ⊢ ¬x ∈ B → ¬x ∈ A, contraposition 5. 07. 1, 2 ⊢ ¬x ∈ A, subj_elim 6 4. 08. 1, 2 ⊢ x ∈ X \ A, diff_intro 3 7. 09. 1 ⊢ x ∈ X \ B → x ∈ X \ A, subj_intro 8. 10. 1 ⊢ ∀x. x ∈ X \ B → x ∈ X \ A, uq_intro 9. 11. 1 ⊢ X \ B ⊆ X \ A, incl_intro 10. incl_contraposition. ⊢ A ⊆ B → X \ B ⊆ X \ A, subj_intro 11.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.