Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ ¬a = 0, hypo. 03. 3 ⊢ a⋅a = 0, hypo. 04. 3 ⊢ a⋅a⋅(1/a) = 0⋅(1/a), eq_cong 3, f t = t⋅(1/a). 05. 1, 2 ⊢ 1/a ∈ ℝ, rreci_closed 1 2. 06. 1, 2 ⊢ 0⋅(1/a) = 0, rmul_lzero 5. 07. 1, 2, 3 ⊢ a⋅a⋅(1/a) = 0, eq_trans 4 6. 08. 1, 2 ⊢ a⋅a⋅(1/a) = a⋅(a⋅(1/a)), rmul_assoc 1 1 5. 09. 1, 2 ⊢ a⋅(1/a) = 1, rmul_reci_cancel 1 2. 10. 1, 2 ⊢ a⋅a⋅(1/a) = a⋅1, eq_subst 9 8, P t ↔ a⋅a⋅(1/a) = a⋅t. 11. 1, 2, 3 ⊢ a⋅1 = 0, eq_trans_ll 10 7. 12. 1 ⊢ a⋅1 = a, rmul_neutr 1. 13. 1, 2, 3 ⊢ a = 0, eq_trans_ll 12 11. 14. 1, 2, 3 ⊢ ⊥, neg_elim 2 13. 15. 1, 2 ⊢ ¬a⋅a = 0, neg_intro 14. rsq_non_zero. ⊢ a ∈ ℝ → ¬a = 0 → ¬a⋅a = 0, subj_intro_ii 15.
Dependencies
The given proof depends on 15 axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rinv_closed, rmul_assoc, rmul_closed, rmul_comm, rmul_distl_add, rmul_inv, rmul_neutr, rneg_closed.