Theorem rmul_reci_cancel

Theorem. rmul_reci_cancel
a ∈ ℝ → ¬a = 0 → a⋅(1/a) = 1
Proof
01. 1 ⊢ a ∈ ℝ, hypo.
02. 2 ⊢ ¬a = 0, hypo.
03. 1, 2 ⊢ 1/a = /a, rdiv_reci 1 2.
04. 1, 2 ⊢ a⋅(1/a) = a⋅(/a), eq_cong 3, f t = a⋅t.
05. 1, 2 ⊢ a⋅(/a) = 1, rmul_inv 1 2.
06. 1, 2 ⊢ a⋅(1/a) = 1, eq_trans 4 5.
rmul_reci_cancel. ⊢ a ∈ ℝ → ¬a = 0 → a⋅(1/a) = 1,
  subj_intro_ii 6.

Dependencies
The given proof depends on six axioms:
eq_refl, eq_subst, rinv_closed, rmul_comm, rmul_inv, rmul_neutr.