Proof 01. 1 ⊢ univ U, hypo. 02. 2 ⊢ x ∈ U, hypo. 03. 2 ⊢ set x, set_intro 2. 04. 2 ⊢ {x} ⊆ power x, sg_incl_in_power 3. 05. 2 ⊢ set {x}, set_sg 3. 06. 2 ⊢ {x} ∈ power (power x), power_intro 5 4. 07. 1, 2 ⊢ power x ∈ U, univ_closed_power 1 2. 08. 1, 2 ⊢ power (power x) ∈ U, univ_closed_power 1 7. 09. 1, 2 ⊢ power (power x) ⊆ U, univ_trans 1 8. 10. 1, 2 ⊢ {x} ∈ U, incl_elim 9 6. univ_closed_sg. ⊢ univ U → x ∈ U → {x} ∈ U, subj_intro_ii 10.
Dependencies
The given proof depends on five axioms:
comp, eq_refl, eq_subst, ext, pairing.