Proof 01. 1 ⊢ set x, hypo. 02. 2 ⊢ u ∈ {x}, hypo. 03. 1, 2 ⊢ u = x, sg_elim 1 2. 04. ⊢ x ⊆ x, incl_refl. 05. 1 ⊢ x ∈ power x, power_intro 1 4. 06. 1, 2 ⊢ u ∈ power x, eq_subst_rev 3 5, P u ↔ u ∈ power x. 07. 1 ⊢ u ∈ {x} → u ∈ power x, subj_intro 6. 08. 1 ⊢ ∀u. u ∈ {x} → u ∈ power x, uq_intro 7. 09. 1 ⊢ {x} ⊆ power x, incl_intro 8. sg_incl_in_power. ⊢ set x → {x} ⊆ power x, subj_intro 9.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.