Theorem nmul_compatr_neg

Theorem. nmul_compatr_neg
a ∈ ℕ → b ∈ ℕ → -(a⋅b) = a⋅(-b)
Proof
nmul_compatr_neg. ⊢ a ∈ ℕ → b ∈ ℕ → -(a⋅b) = a⋅(-b),
  pred_ii_restr nat_incl_in_real rmul_compatr_neg.

Dependencies
The given proof depends on 12 axioms:
comp, eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, real_is_set, rmul_closed, rmul_distl_add, rneg_closed.