Proof 01. 1 ⊢ set a, hypo. 02. 2 ⊢ ¬a ∈ X, hypo. 03. 3 ⊢ x ∈ X ∩ {a}, hypo. 04. 3 ⊢ x ∈ X, intersection_eliml 3. 05. 3 ⊢ x ∈ {a}, intersection_elimr 3. 06. 1, 3 ⊢ x = a, sg_elim 1 5. 07. 1, 3 ⊢ a ∈ X, eq_subst 6 4. 08. 1, 2, 3 ⊢ ⊥, neg_elim 2 7. 09. 1, 2, 3 ⊢ x ∈ ∅, efq 8. 10. 1, 2 ⊢ x ∈ X ∩ {a} → x ∈ ∅, subj_intro 9. 11. 1, 2 ⊢ ∀x. x ∈ X ∩ {a} → x ∈ ∅, uq_intro 10. 12. 1, 2 ⊢ X ∩ {a} ⊆ ∅, incl_intro 11. 13. ⊢ ∅ ⊆ X ∩ {a}, empty_set_is_least. 14. 1, 2 ⊢ X ∩ {a} = ∅, incl_antisym 12 13. disjoint_sg_from_new. ⊢ set a → ¬a ∈ X → X ∩ {a} = ∅, subj_intro_ii 14.
Dependencies
The given proof depends on four axioms:
comp, efq, eq_subst, ext.