Proof 01. 1 ⊢ A ⊆ B, hypo. 02. 2 ⊢ x ∈ ⋂B, hypo. 03. 3 ⊢ y ∈ A, hypo. 04. 1, 3 ⊢ y ∈ B, incl_elim 1 3. 05. 1, 2, 3 ⊢ x ∈ y, Intersection_elim 2 4. 06. 1, 2 ⊢ y ∈ A → x ∈ y, subj_intro 5. 07. 1, 2 ⊢ ∀y. y ∈ A → x ∈ y, uq_intro 6. 08. 2 ⊢ set x, set_intro 2. 09. 1, 2 ⊢ x ∈ ⋂A, Intersection_intro 8 7. 10. 1 ⊢ x ∈ ⋂B → x ∈ ⋂A, subj_intro 9. 11. 1 ⊢ ∀x. x ∈ ⋂B → x ∈ ⋂A, uq_intro 10. 12. 1 ⊢ ⋂B ⊆ ⋂A, incl_intro 11. Intersection_dec. ⊢ A ⊆ B → ⋂B ⊆ ⋂A, subj_intro 12.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.