Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. 3 ⊢ c ∈ ℝ, hypo. 04. 4 ⊢ ¬c = 0, hypo. 05. 3, 4 ⊢ /c ∈ ℝ, rinv_closed 3 4. 06. ⊢ (a - b)/c = (a - b)⋅(/c), rdiv_eq. 07. 1, 2, 3, 4 ⊢ (a - b)⋅(/c) = a⋅(/c) - b⋅(/c), rmul_distr_sub 1 2 5. 08. 1, 2, 3, 4 ⊢ (a - b)/c = a⋅(/c) - b⋅(/c), eq_trans 6 7. 09. ⊢ a/c = a⋅(/c), rdiv_eq. 10. ⊢ b/c = b⋅(/c), rdiv_eq. 11. ⊢ a/c - b/c = a⋅(/c) - b⋅(/c), eq_cong_ii 9 10, f x y = x - y. 12. 1, 2, 3, 4 ⊢ (a - b)/c = a/c - b/c, eq_trans_rr 8 11. rdiv_dist_sub. ⊢ a ∈ ℝ → b ∈ ℝ → c ∈ ℝ → ¬c = 0 → (a - b)/c = a/c - b/c, subj_intro_iv 12.
Dependencies
The given proof depends on 12 axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rinv_closed, rmul_closed, rmul_comm, rmul_distl_add, rneg_closed.