Theorem eq_cong_ii

Theorem. eq_cong_ii
x = a → y = b → f x y = f a b

Congruence rule for function application.

Proof
01. 1 ⊢ x = a, hypo.
02. 2 ⊢ y = b, hypo.
03. ⊢ f x y = f x y, eq_refl.
04. 1 ⊢ f x y = f a y, eq_subst 1 3, P t ↔ f x y = f t y.
05. 1, 2 ⊢ f x y = f a b, eq_subst 2 4, P t ↔ f x y = f a t.
eq_cong_ii. ⊢ x = a → y = b → f x y = f a b, subj_intro_ii 5.

Dependencies
The given proof depends on two axioms:
eq_refl, eq_subst.