Theorem imul_distl_sub

Theorem. imul_distl_sub
a ∈ ℤ → b ∈ ℤ → c ∈ ℤ → a⋅(b - c) = a⋅b - a⋅c
Proof
imul_distl_sub. ⊢ a ∈ ℤ → b ∈ ℤ → c ∈ ℤ → a⋅(b - c) = a⋅b - a⋅c,
  pred_iii_restr int_incl_in_real rmul_distl_sub.

Dependencies
The given proof depends on 11 axioms:
comp, eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rmul_closed, rmul_distl_add, rneg_closed.