Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. 3 ⊢ c ∈ ℝ, hypo. 04. ⊢ b - c = b + (-c), rsub_eq. 05. ⊢ a⋅(b - c) = a⋅(b + (-c)), eq_cong 4, f x = a⋅x. 06. 3 ⊢ -c ∈ ℝ, rneg_closed 3. 07. 1, 2, 3 ⊢ a⋅(b + (-c)) = a⋅b + a⋅(-c), rmul_distl_add 1 2 6. 08. 1, 2, 3 ⊢ a⋅(b - c) = a⋅b + a⋅(-c), eq_trans 5 7. 09. 1, 3 ⊢ -(a⋅c) = a⋅(-c), rmul_compatr_neg 1 3. 10. 1, 2, 3 ⊢ a⋅(b - c) = a⋅b + -(a⋅c), eq_subst_rev 9 8, P t ↔ a⋅(b - c) = a⋅b + t. 11. ⊢ a⋅b - a⋅c = a⋅b + -(a⋅c), rsub_eq. 12. ⊢ a⋅b + -(a⋅c) = a⋅b - a⋅c, eq_symm 11. 13. 1, 2, 3 ⊢ a⋅(b - c) = a⋅b - a⋅c, eq_trans 10 12. rmul_distl_sub. ⊢ a ∈ ℝ → b ∈ ℝ → c ∈ ℝ → a⋅(b - c) = a⋅b - a⋅c, subj_intro_iii 13.
Dependencies
The given proof depends on 10 axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rmul_closed, rmul_distl_add, rneg_closed.