Theorem incl_ext

Theorem. incl_ext
(∀X. X ⊆ A ↔ X ⊆ B) → A = B
Proof
01. 1 ⊢ ∀X. X ⊆ A ↔ X ⊆ B, hypo.
02. 1 ⊢ A ⊆ A ↔ A ⊆ B, uq_elim 1.
03. 1 ⊢ B ⊆ A ↔ B ⊆ B, uq_elim 1.
04. ⊢ A ⊆ A, incl_refl.
05. ⊢ B ⊆ B, incl_refl.
06. 1 ⊢ A ⊆ B, lsubj_elim 2 4.
07. 1 ⊢ B ⊆ A, rsubj_elim 3 5.
08. 1 ⊢ A = B, incl_antisym 6 7.
incl_ext. ⊢ (∀X. X ⊆ A ↔ X ⊆ B) → A = B, subj_intro 8.

Dependencies
The given proof depends on one axiom:
ext.