Proof 01. 1 ⊢ R ⊆ X × Y, hypo. 02. 2 ⊢ t ∈ R, hypo. 03. 1, 2 ⊢ t ∈ X × Y, incl_elim 1 2. 04. 1, 2 ⊢ ∃x. ∃y. x ∈ X ∧ y ∈ Y ∧ t = (x, y), prod_elim 3. 05. 5 ⊢ ∃y. x ∈ X ∧ y ∈ Y ∧ t = (x, y), hypo. 06. 6 ⊢ x ∈ X ∧ y ∈ Y ∧ t = (x, y), hypo. 07. 6 ⊢ t = (x, y), conj_elimr 6. 08. 6 ⊢ ∃y. t = (x, y), ex_intro 7. 09. 6 ⊢ ∃x. ∃y. t = (x, y), ex_intro 8. 10. 5 ⊢ ∃x. ∃y. t = (x, y), ex_elim 5 9. 11. 1, 2 ⊢ ∃x. ∃y. t = (x, y), ex_elim 4 10. 12. 1 ⊢ t ∈ R → ∃x. ∃y. t = (x, y), subj_intro 11. 13. 1 ⊢ ∀t. t ∈ R → ∃x. ∃y. t = (x, y), uq_intro 12. 14. ⊢ (∀t. t ∈ R → ∃x. ∃y. t = (x, y)) → relation R, bij_elimr relation_equi. 15. 1 ⊢ relation R, subj_elim 14 13. relation_from_incl. ⊢ R ⊆ X × Y → relation R, subj_intro 15.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.