Proof 01. 1 ⊢ t ∈ X × Y, hypo. 02. ⊢ X × Y = {t | ∃x. ∃y. x ∈ X ∧ y ∈ Y ∧ t = (x, y)}, prod_eq. 03. 1 ⊢ t ∈ {t | ∃x. ∃y. x ∈ X ∧ y ∈ Y ∧ t = (x, y)}, eq_subst 2 1, P u ↔ t ∈ u. 04. 1 ⊢ ∃x. ∃y. x ∈ X ∧ y ∈ Y ∧ t = (x, y), comp_elim 3. prod_elim. ⊢ t ∈ X × Y → ∃x. ∃y. x ∈ X ∧ y ∈ Y ∧ t = (x, y), subj_intro 4.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.