Proof 01. 1 ⊢ t ∈ S ∘ R, hypo. 02. ⊢ S ∘ R = {t | ∃x. ∃y. ∃z. t = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S}, composition_eq. 03. 1 ⊢ t ∈ {t | ∃x. ∃y. ∃z. t = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S}, eq_subst 2 1, P u ↔ t ∈ u. 04. 1 ⊢ ∃x. ∃y. ∃z. t = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S, comp_elim 3. 05. 5 ⊢ ∃y. ∃z. t = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S, hypo. 06. 6 ⊢ ∃z. t = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S, hypo. 07. 7 ⊢ t = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S, hypo. 08. 7 ⊢ t = (x, z), conj_elimll 7. 09. 7 ⊢ ∃z. t = (x, z), ex_intro 8. 10. 7 ⊢ ∃x. ∃z. t = (x, z), ex_intro 9. 11. 6 ⊢ ∃x. ∃z. t = (x, z), ex_elim 6 10. 12. 5 ⊢ ∃x. ∃z. t = (x, z), ex_elim 5 11. 13. 1 ⊢ ∃x. ∃z. t = (x, z), ex_elim 4 12. 14. ⊢ t ∈ S ∘ R → ∃x. ∃z. t = (x, z), subj_intro 13. 15. ⊢ ∀t. t ∈ S ∘ R → ∃x. ∃z. t = (x, z), uq_intro 14. composition_is_relation. ⊢ relation (S ∘ R), relation_fold 15.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.