From -a ≤ x ≤ a it follows that |x| ≤ a.
Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ x ∈ ℝ, hypo. 03. 3 ⊢ -a ≤ x, hypo. 04. 4 ⊢ x ≤ a, hypo. 05. ⊢ 0 ≤ x ∨ ¬0 ≤ x, lem. 06. 6 ⊢ 0 ≤ x, hypo. 07. 2, 6 ⊢ abs x = x, rabs_eql 2 6. 08. 2, 4, 6 ⊢ abs x ≤ a, eq_le_trans 7 4. 09. 9 ⊢ ¬0 ≤ x, hypo. 10. 2, 9 ⊢ abs x = -x, rabs_eqr 2 9. 11. 1 ⊢ -a ∈ ℝ, rneg_closed 1. 12. 1, 2, 3 ⊢ -x ≤ -(-a), rle_neg_swaps 11 2 3. 13. 1 ⊢ -(-a) = a, rneg_involution 1. 14. 1, 2, 3 ⊢ -x ≤ a, le_eq_trans 12 13. 15. 1, 2, 3, 9 ⊢ abs x ≤ a, eq_le_trans 10 14. 16. 1, 2, 3, 4 ⊢ abs x ≤ a, disj_elim 5 8 15. rabs_bounded. ⊢ a ∈ ℝ → x ∈ ℝ → -a ≤ x → x ≤ a → abs x ≤ a, subj_intro_iv 16.
Dependencies
The given proof depends on 13 axioms:
comp, efq, eq_refl, eq_subst, ext, lem, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rle_compat_add, rneg_closed.