Proof 01. 1 ⊢ relation R, hypo. 02. 2 ⊢ y ∈ rng R, hypo. 03. 2 ⊢ ∃x. (x, y) ∈ R, rng_elim 2. 04. 4 ⊢ (x, y) ∈ R, hypo. 05. 4 ⊢ x ∈ dom R, dom_intro 4. 06. 4 ⊢ y ∈ img R (dom R), img_intro 5 4. 07. 2 ⊢ y ∈ img R (dom R), ex_elim 3 6. 08. ⊢ y ∈ rng R → y ∈ img R (dom R), subj_intro 7. 09. ⊢ ∀y. y ∈ rng R → y ∈ img R (dom R), uq_intro 8. 10. ⊢ rng R ⊆ img R (dom R), incl_intro 9. 11. ⊢ img R (dom R) ⊆ rng R, img_incl_in_rng. img_of_dom_is_rng. ⊢ img R (dom R) = rng R, incl_antisym 11 10.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.