Proof 01. 1 ⊢ y ∈ rng R, hypo. 02. 1 ⊢ y ∈ {y | ∃x. (x, y) ∈ R}, eq_subst rng_eq 1, P u ↔ y ∈ u. 03. 1 ⊢ ∃x. (x, y) ∈ R, comp_elim 2. rng_elim. ⊢ y ∈ rng R → ∃x. (x, y) ∈ R, subj_intro 3.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.