Theorem img_incl_in_rng

Theorem. img_incl_in_rng
img R A ⊆ rng R
Proof
01. 1 ⊢ y ∈ img R A, hypo.
02. 1 ⊢ ∃x. x ∈ A ∧ (x, y) ∈ R, img_elim 1.
03. 3 ⊢ x ∈ A ∧ (x, y) ∈ R, hypo.
04. 3 ⊢ (x, y) ∈ R, conj_elimr 3.
05. 3 ⊢ y ∈ rng R, rng_intro 4.
06. 1 ⊢ y ∈ rng R, ex_elim 2 5.
07. ⊢ y ∈ img R A → y ∈ rng R, subj_intro 6.
08. ⊢ ∀y. y ∈ img R A → y ∈ rng R, uq_intro 7.
img_incl_in_rng. ⊢ img R A ⊆ rng R, incl_intro 8.

Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.