Proof 01. 1 ⊢ y ∈ img R A, hypo. 02. 1 ⊢ ∃x. x ∈ A ∧ (x, y) ∈ R, img_elim 1. 03. 3 ⊢ x ∈ A ∧ (x, y) ∈ R, hypo. 04. 3 ⊢ (x, y) ∈ R, conj_elimr 3. 05. 3 ⊢ y ∈ rng R, rng_intro 4. 06. 1 ⊢ y ∈ rng R, ex_elim 2 5. 07. ⊢ y ∈ img R A → y ∈ rng R, subj_intro 6. 08. ⊢ ∀y. y ∈ img R A → y ∈ rng R, uq_intro 7. img_incl_in_rng. ⊢ img R A ⊆ rng R, incl_intro 8.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.