Theorem ile_trans

Theorem. ile_trans
a ∈ ℤ → b ∈ ℤ → c ∈ ℤ → a ≤ b → b ≤ c → a ≤ c
Proof
ile_trans. ⊢ a ∈ ℤ → b ∈ ℤ → c ∈ ℤ → a ≤ b → b ≤ c → a ≤ c,
  pred_iii_restr int_incl_in_real rle_trans.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, rle_trans.