Proof ile_trans. ⊢ a ∈ ℤ → b ∈ ℤ → c ∈ ℤ → a ≤ b → b ≤ c → a ≤ c, pred_iii_restr int_incl_in_real rle_trans.
DependenciesThe given proof depends on four axioms:comp, eq_refl, eq_subst, rle_trans.