Theorem incl_Knaster_Tarski_least

Theorem. incl_Knaster_Tarski_least
set a → map f (power a) (power a) → (∀x. ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y) → ∃u. u ⊆ a ∧ app f u = u ∧ (∀x. x ⊆ a → app f x = x → u ⊆ x)
Proof
let M = {x | x ⊆ a ∧ app f x ⊆ x}.
let w = ⋂M.
01. 1 ⊢ set a, hypo.
02. 2 ⊢ map f (power a) (power a), hypo.
03. 3 ⊢ ∀x. ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y, hypo.
04. 4 ⊢ x ∈ M, hypo.
05. ⊢ w = w, eq_refl.
06. 4 ⊢ w ⊆ x, Intersection_is_lower_bound 5 4.
07. 4 ⊢ x ⊆ a ∧ app f x ⊆ x, comp_elim 4.
08. 4 ⊢ x ⊆ a, conj_eliml 7.
09. 3 ⊢ ∀y. y ⊆ a → w ⊆ y → app f w ⊆ app f y, uq_elim 3.
10. 3, 4 ⊢ w ⊆ x → app f w ⊆ app f x, uq_bounded_elim 9 8.
11. 3, 4 ⊢ app f w ⊆ app f x, subj_elim 10 6.
12. 4 ⊢ app f x ⊆ x, conj_elimr 7.
13. 3, 4 ⊢ app f w ⊆ x, incl_trans 11 12.
14. 3 ⊢ x ∈ M → app f w ⊆ x, subj_intro 13.
15. 3 ⊢ ∀x. x ∈ M → app f w ⊆ x, uq_intro 14.
16. 3 ⊢ app f w ⊆ w, Intersection_is_infimum 15.
17. ⊢ a ⊆ a, incl_refl.
18. 1 ⊢ a ∈ power a, power_intro 1 17.
19. 1, 2 ⊢ app f a ∈ power a, map_app_in_cod 2 18.
20. 1, 2 ⊢ app f a ⊆ a, power_elim 19.
21. 1, 2 ⊢ a ⊆ a ∧ app f a ⊆ a, conj_intro 17 20.
22. 1, 2 ⊢ a ∈ M, comp_intro 1 21, P x ↔ x ⊆ a ∧ app f x ⊆ x.
23. 1, 2 ⊢ w ⊆ a, Intersection_is_lower_bound 5 22.
24. 3 ⊢ ∀y. y ⊆ a → app f w ⊆ y →
  app f (app f w) ⊆ app f y, uq_elim 3.
25. 1, 2, 3 ⊢ app f w ⊆ w →
  app f (app f w) ⊆ app f w, uq_bounded_elim 24 23.
26. 1, 2, 3 ⊢ app f (app f w) ⊆ app f w, subj_elim 25 16.
27. 1, 2, 3 ⊢ app f w ⊆ a, incl_trans 16 23.
28. 1, 2, 3 ⊢ set (app f w), subset 27 1.
29. 1, 2, 3 ⊢ app f w ⊆ a ∧
  app f (app f w) ⊆ app f w, conj_intro 27 26.
30. 1, 2, 3 ⊢ app f w ∈ M,
  comp_intro 28 29, P x ↔ x ⊆ a ∧ app f x ⊆ x.
31. 1, 2, 3 ⊢ w ⊆ app f w, Intersection_is_lower_bound 5 30.
32. 1, 2, 3 ⊢ app f w = w, incl_antisym 16 31.
33. 33 ⊢ x ⊆ a, hypo.
34. 34 ⊢ app f x = x, hypo.
35. 34 ⊢ app f x ⊆ x, incl_from_eq 34.
36. 33, 34 ⊢ x ⊆ a ∧ app f x ⊆ x, conj_intro 33 35.
37. 1, 33 ⊢ set x, subset 33 1.
38. 1, 33, 34 ⊢ x ∈ M, comp_intro 37 36.
39. 1, 33, 34 ⊢ w ⊆ x, Intersection_is_lower_bound 5 38.
40. 1 ⊢ x ⊆ a → app f x = x → w ⊆ x, subj_intro_ii 39.
41. 1 ⊢ ∀x. x ⊆ a → app f x = x → w ⊆ x, uq_intro 40.
42. 1, 2, 3 ⊢ w ⊆ a ∧ app f w = w, conj_intro 23 32.
43. 1, 2, 3 ⊢ w ⊆ a ∧ app f w = w ∧
  (∀x. x ⊆ a → app f x = x → w ⊆ x), conj_intro 42 41.
44. 1, 2, 3 ⊢ ∃u. u ⊆ a ∧ app f u = u ∧
  (∀x. x ⊆ a → app f x = x → u ⊆ x), ex_intro 43.
incl_Knaster_Tarski_least. ⊢ set a → map f (power a) (power a) →
  (∀x. ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y) →
  ∃u. u ⊆ a ∧ app f u = u ∧ (∀x. x ⊆ a → app f x = x → u ⊆ x),
  subj_intro_iii 44.

Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.