Proof let M = {x | x ⊆ a ∧ app f x ⊆ x}. let w = ⋂M. 01. 1 ⊢ set a, hypo. 02. 2 ⊢ map f (power a) (power a), hypo. 03. 3 ⊢ ∀x. ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y, hypo. 04. 4 ⊢ x ∈ M, hypo. 05. ⊢ w = w, eq_refl. 06. 4 ⊢ w ⊆ x, Intersection_is_lower_bound 5 4. 07. 4 ⊢ x ⊆ a ∧ app f x ⊆ x, comp_elim 4. 08. 4 ⊢ x ⊆ a, conj_eliml 7. 09. 3 ⊢ ∀y. y ⊆ a → w ⊆ y → app f w ⊆ app f y, uq_elim 3. 10. 3, 4 ⊢ w ⊆ x → app f w ⊆ app f x, uq_bounded_elim 9 8. 11. 3, 4 ⊢ app f w ⊆ app f x, subj_elim 10 6. 12. 4 ⊢ app f x ⊆ x, conj_elimr 7. 13. 3, 4 ⊢ app f w ⊆ x, incl_trans 11 12. 14. 3 ⊢ x ∈ M → app f w ⊆ x, subj_intro 13. 15. 3 ⊢ ∀x. x ∈ M → app f w ⊆ x, uq_intro 14. 16. 3 ⊢ app f w ⊆ w, Intersection_is_infimum 15. 17. ⊢ a ⊆ a, incl_refl. 18. 1 ⊢ a ∈ power a, power_intro 1 17. 19. 1, 2 ⊢ app f a ∈ power a, map_app_in_cod 2 18. 20. 1, 2 ⊢ app f a ⊆ a, power_elim 19. 21. 1, 2 ⊢ a ⊆ a ∧ app f a ⊆ a, conj_intro 17 20. 22. 1, 2 ⊢ a ∈ M, comp_intro 1 21, P x ↔ x ⊆ a ∧ app f x ⊆ x. 23. 1, 2 ⊢ w ⊆ a, Intersection_is_lower_bound 5 22. 24. 3 ⊢ ∀y. y ⊆ a → app f w ⊆ y → app f (app f w) ⊆ app f y, uq_elim 3. 25. 1, 2, 3 ⊢ app f w ⊆ w → app f (app f w) ⊆ app f w, uq_bounded_elim 24 23. 26. 1, 2, 3 ⊢ app f (app f w) ⊆ app f w, subj_elim 25 16. 27. 1, 2, 3 ⊢ app f w ⊆ a, incl_trans 16 23. 28. 1, 2, 3 ⊢ set (app f w), subset 27 1. 29. 1, 2, 3 ⊢ app f w ⊆ a ∧ app f (app f w) ⊆ app f w, conj_intro 27 26. 30. 1, 2, 3 ⊢ app f w ∈ M, comp_intro 28 29, P x ↔ x ⊆ a ∧ app f x ⊆ x. 31. 1, 2, 3 ⊢ w ⊆ app f w, Intersection_is_lower_bound 5 30. 32. 1, 2, 3 ⊢ app f w = w, incl_antisym 16 31. 33. 33 ⊢ x ⊆ a, hypo. 34. 34 ⊢ app f x = x, hypo. 35. 34 ⊢ app f x ⊆ x, incl_from_eq 34. 36. 33, 34 ⊢ x ⊆ a ∧ app f x ⊆ x, conj_intro 33 35. 37. 1, 33 ⊢ set x, subset 33 1. 38. 1, 33, 34 ⊢ x ∈ M, comp_intro 37 36. 39. 1, 33, 34 ⊢ w ⊆ x, Intersection_is_lower_bound 5 38. 40. 1 ⊢ x ⊆ a → app f x = x → w ⊆ x, subj_intro_ii 39. 41. 1 ⊢ ∀x. x ⊆ a → app f x = x → w ⊆ x, uq_intro 40. 42. 1, 2, 3 ⊢ w ⊆ a ∧ app f w = w, conj_intro 23 32. 43. 1, 2, 3 ⊢ w ⊆ a ∧ app f w = w ∧ (∀x. x ⊆ a → app f x = x → w ⊆ x), conj_intro 42 41. 44. 1, 2, 3 ⊢ ∃u. u ⊆ a ∧ app f u = u ∧ (∀x. x ⊆ a → app f x = x → u ⊆ x), ex_intro 43. incl_Knaster_Tarski_least. ⊢ set a → map f (power a) (power a) → (∀x. ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y) → ∃u. u ⊆ a ∧ app f u = u ∧ (∀x. x ⊆ a → app f x = x → u ⊆ x), subj_intro_iii 44.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.