Proof 01. 1 ⊢ transitive x, hypo. 02. 2 ⊢ u ∈ power x, hypo. 03. 2 ⊢ u ⊆ x, power_elim 2. 04. 4 ⊢ y ∈ u, hypo. 05. 2, 4 ⊢ y ∈ x, incl_elim 3 4. 06. 1, 2, 4 ⊢ y ⊆ x, transitive_elim 1 5. 07. 4 ⊢ set y, set_intro 4. 08. 1, 2, 4 ⊢ y ∈ power x, power_intro 7 6. 09. 1, 2 ⊢ y ∈ u → y ∈ power x, subj_intro 8. 10. 1, 2 ⊢ ∀y. y ∈ u → y ∈ power x, uq_intro 9. 11. 1, 2 ⊢ u ⊆ power x, incl_intro 10. 12. 1 ⊢ u ∈ power x → u ⊆ power x, subj_intro 11. 13. 1 ⊢ ∀u. u ∈ power x → u ⊆ power x, uq_intro 12. 14. 1 ⊢ transitive (power x), transitive_intro 13. transitive_closed_power. ⊢ transitive x → transitive (power x), subj_intro 14.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.