Theorem union_incl_in

Theorem. union_incl_in
A1 ⊆ B → A2 ⊆ B → A1 ∪ A2 ⊆ B
Proof
01. 1 ⊢ A1 ⊆ B, hypo.
02. 2 ⊢ A2 ⊆ B, hypo.
03. 1, 2 ⊢ A1 ∪ A2 ⊆ B ∪ B, union_incl_in_union 1 2.
04. ⊢ B ∪ B = B, union_idem.
05. 1, 2 ⊢ A1 ∪ A2 ⊆ B, eq_subst 4 3, P u ↔ A1 ∪ A2 ⊆ u.
union_incl_in. ⊢ A1 ⊆ B → A2 ⊆ B → A1 ∪ A2 ⊆ B, subj_intro_ii 5.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.