Proof 01. 1 ⊢ A1 ⊆ B1, hypo. 02. 2 ⊢ A2 ⊆ B2, hypo. 03. 3 ⊢ x ∈ A1 ∪ A2, hypo. 04. 3 ⊢ x ∈ A1 ∨ x ∈ A2, union_elim 3. 05. 5 ⊢ x ∈ A1, hypo. 06. 1, 5 ⊢ x ∈ B1, incl_elim 1 5. 07. 1, 5 ⊢ x ∈ B1 ∪ B2, union_introl 6. 08. 8 ⊢ x ∈ A2, hypo. 09. 2, 8 ⊢ x ∈ B2, incl_elim 2 8. 10. 2, 8 ⊢ x ∈ B1 ∪ B2, union_intror 9. 11. 1, 2, 3 ⊢ x ∈ B1 ∪ B2, disj_elim 4 7 10. 12. 1, 2 ⊢ x ∈ A1 ∪ A2 → x ∈ B1 ∪ B2, subj_intro 11. 13. 1, 2 ⊢ ∀x. x ∈ A1 ∪ A2 → x ∈ B1 ∪ B2, uq_intro 12. 14. 1, 2 ⊢ A1 ∪ A2 ⊆ B1 ∪ B2, incl_intro 13. union_incl_in_union. ⊢ A1 ⊆ B1 → A2 ⊆ B2 → A1 ∪ A2 ⊆ B1 ∪ B2, subj_intro_ii 14.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.