Theorem map_restr

Theorem. map_restr
map f X Y → A ⊆ X → map (restr f A) A Y
Proof
01. 1 ⊢ map f X Y, hypo.
02. 2 ⊢ A ⊆ X, hypo.
03. 1 ⊢ function f ∧ dom f = X ∧ rng f ⊆ Y, map_unfold 1.
04. 1 ⊢ function f ∧ dom f = X, conj_eliml 3.
05. 1 ⊢ function f, conj_eliml 4.
06. 1 ⊢ dom f = X, conj_elimr 4.
07. 1 ⊢ rng f ⊆ Y, conj_elimr 3.
08. ⊢ restr f A ⊆ f, restr_is_subclass.
09. 1 ⊢ function (restr f A), function_subclass 8 5.
10. 1, 2 ⊢ dom (restr f A) = A, dom_restr_subclass 1 2.
11. ⊢ rng (restr f A) ⊆ rng f, rng_subclass 8.
12. 1 ⊢ rng (restr f A) ⊆ Y, incl_trans 11 7.
13. 1, 2 ⊢ map (restr f A) A Y, map_intro 9 10 12.
map_restr. ⊢ map f X Y → A ⊆ X → map (restr f A) A Y, subj_intro_ii 13.

Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.