Proof 01. 1 ⊢ map f X Y, hypo. 02. 2 ⊢ A ⊆ X, hypo. 03. 1 ⊢ function f ∧ dom f = X ∧ rng f ⊆ Y, map_unfold 1. 04. 1 ⊢ function f ∧ dom f = X, conj_eliml 3. 05. 1 ⊢ dom f = X, conj_elimr 4. 06. ⊢ dom (restr f A) = dom f ∩ A, dom_restr. 07. 1 ⊢ dom (restr f A) = X ∩ A, eq_subst 5 6, P u ↔ dom (restr f A) = u ∩ A. 08. 2 ⊢ A ∩ X = A, intersection_from_incl 2. 09. ⊢ A ∩ X = X ∩ A, intersection_comm. 10. 2 ⊢ X ∩ A = A, eq_subst 9 8, P u ↔ u = A. 08. 1, 2 ⊢ dom (restr f A) = A, eq_subst 10 7, P u ↔ dom (restr f A) = u. dom_restr_subclass. ⊢ map f X Y → A ⊆ X → dom (restr f A) = A, subj_intro_ii 8.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.