Theorem intersection_from_incl

Theorem. intersection_from_incl
A ⊆ B → A ∩ B = A
Proof
01. 1 ⊢ A ⊆ B, hypo.
02. 2 ⊢ x ∈ A, hypo.
03. 1, 2 ⊢ x ∈ B, incl_elim 1 2.
04. 1, 2 ⊢ x ∈ A ∩ B, intersection_intro 2 3.
05. 1 ⊢ x ∈ A → x ∈ A ∩ B, subj_intro 4.
06. 1 ⊢ ∀x. x ∈ A → x ∈ A ∩ B, uq_intro 5.
07. 1 ⊢ A ⊆ A ∩ B, incl_intro 6.
08. ⊢ A ∩ B ⊆ A, intersection_incl_left.
09. 1 ⊢ A ∩ B = A, incl_antisym 8 7.
intersection_from_incl. ⊢ A ⊆ B → A ∩ B = A, subj_intro 9.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.