Proof 01. 1 ⊢ function f, hypo. 02. 2 ⊢ dom f = X, hypo. 03. 3 ⊢ rng f ⊆ Y, hypo. 04. 1, 2 ⊢ function f ∧ dom f = X, conj_intro 1 2. 05. 1, 2, 3 ⊢ function f ∧ dom f = X ∧ rng f ⊆ Y, conj_intro 4 3. 06. ⊢ function f ∧ dom f = X ∧ rng f ⊆ Y → map f X Y, bij_elimr map_equi. 07. 1, 2, 3 ⊢ map f X Y, subj_elim 6 5. map_intro. ⊢ function f → dom f = X → rng f ⊆ Y → map f X Y, subj_intro_iii 7.