Proof 01. 1 ⊢ f ∈ Map X Y, hypo. 02. 1 ⊢ f ∈ {f | map f X Y}, eq_subst Map_eq 1, P t ↔ f ∈ t. 03. 1 ⊢ map f X Y, comp_elim 2. Map_elim. ⊢ f ∈ Map X Y → map f X Y, subj_intro 3.
DependenciesThe given proof depends on two axioms:comp, eq_subst.