Theorem rneg_non_negative

Theorem. rneg_non_negative
x ∈ ℝ → 0 ≤ x → -x ≤ 0
Proof
01. 1 ⊢ x ∈ ℝ, hypo.
02. 2 ⊢ 0 ≤ x, hypo.
03. ⊢ 0 ∈ ℝ, calc.
04. 1, 2 ⊢ 0 - x ≤ x - x, rle_compat_sub 3 1 1 2.
05. 1 ⊢ 0 - x = -x, rsub_from_zero 1.
06. 1, 2 ⊢ -x ≤ x - x, eq_subst 5 4, P t ↔ t ≤ x - x.
07. ⊢ x - x = x + -x, rsub_eq.
08. 1 ⊢ x + -x = 0, radd_inv 1.
09. 1 ⊢ x - x = 0, eq_trans 7 8.
10. 1, 2 ⊢ -x ≤ 0, le_eq_trans 6 9.
rneg_non_negative. ⊢ x ∈ ℝ → 0 ≤ x → -x ≤ 0,
  subj_intro_ii 10.

Dependencies
The given proof depends on seven axioms:
eq_refl, eq_subst, radd_comm, radd_inv, radd_neutr, rle_compat_add, rneg_closed.