Theorem intersection_distr

Theorem. intersection_distr
(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)
Proof
01. ⊢ C ∩ (A ∪ B) = (C ∩ A) ∪ (C ∩ B), intersection_distl.
02. ⊢ (A ∪ B) ∩ C = C ∩ (A ∪ B), intersection_comm.
03. ⊢ (A ∪ B) ∩ C = (C ∩ A) ∪ (C ∩ B), eq_trans 2 1.
04. ⊢ C ∩ A = A ∩ C, intersection_comm.
05. ⊢ (A ∪ B) ∩ C = (A ∩ C) ∪ (C ∩ B),
  eq_subst 4 3, P X ↔ (A ∪ B) ∩ C = X ∪ (C ∩ B).
06. ⊢ C ∩ B = B ∩ C, intersection_comm.
intersection_distr. ⊢ (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C),
  eq_subst 6 5, P X ↔ (A ∪ B) ∩ C = (A ∩ C) ∪ X.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.