Theorem imul_lzero

Theorem. imul_lzero
a ∈ ℤ → 0⋅a = 0
Proof
imul_lzero. ⊢ a ∈ ℤ → 0⋅a = 0,
  pred_restr int_incl_in_real rmul_lzero.

Dependencies
The given proof depends on 12 axioms:
comp, eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rmul_closed, rmul_comm, rmul_distl_add, rneg_closed.