Theorem ile_total

Theorem. ile_total
a ∈ ℤ → b ∈ ℤ → a ≤ b ∨ b ≤ a
Proof
ile_total. ⊢ a ∈ ℤ → b ∈ ℤ → a ≤ b ∨ b ≤ a,
  pred_ii_restr int_incl_in_real rle_total.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, rle_total.