Proof 01. 1 ⊢ f = {t | ∃x. P x ∧ t = (x, y x)}, hypo. 02. 2 ⊢ t ∈ f, hypo. 03. 1, 2 ⊢ t ∈ {t | ∃x. P x ∧ t = (x, y x)}, eq_subst 1 2, P u ↔ t ∈ u. 04. 1, 2 ⊢ ∃x. P x ∧ t = (x, y x), comp_elim 3. 05. 5 ⊢ P x ∧ t = (x, y x), hypo. 06. 5 ⊢ t = (x, y x), conj_elimr 5. 07. 5 ⊢ ∃x. t = (x, y x), ex_intro 6. 08. 1, 2 ⊢ ∃x. t = (x, y x), ex_elim 4 7. 09. 1, 2 ⊢ t ∈ {t | ∃x. t = (x, y x)}, comp_intro_from 2 8. 10. 1 ⊢ t ∈ f → t ∈ {t | ∃x. t = (x, y x)}, subj_intro 9. 11. 1 ⊢ ∀t. t ∈ f → t ∈ {t | ∃x. t = (x, y x)}, uq_intro 10. 12. 1 ⊢ f ⊆ {t | ∃x. t = (x, y x)}, incl_intro 11. 13. ⊢ {t | ∃x. t = (x, y x)} = {t | ∃x. t = (x, y x)}, eq_refl. 14. ⊢ function {t | ∃x. t = (x, y x)}, fn_from_term_plain 13. 15. 1 ⊢ function f, function_subclass 12 14. fn_from_term. ⊢ f = {t | ∃x. P x ∧ t = (x, y x)} → function f, subj_intro 15.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.